Irrational Square Roots:

$\sqrt{2}$ and \sqrt{n} when n is a Positive Integer and Not a Perfect Square
[It is recommended that you review Theorem (NIB) 3 in the handout "Theorems (NIB) 1,2, and 3."]
Theorem 4.6.1: $\sqrt{2}$ is irrational.
Proof: [Proof by Contradiction]
Suppose, by way of contradiction, that $\sqrt{2}$ is rational.

Since $\sqrt{2}$ is rational and positive, there exist positive integers m and n, with $n \neq 0$, such that $\sqrt{2}=\frac{m}{n}$, and we can assume that $\frac{m}{n}$ is written in lowest terms, so that m and n have no common prime factor.
[The author mistakenly says that m and n "have no common factor", but 1 is always a common factor.]
Since $\sqrt{2}=\frac{m}{n}, \quad 2=(\sqrt{2})^{2}=\left(\frac{m}{n}\right)^{2}=\frac{m^{2}}{n^{2}} \quad$ by substitution.

Since $2=\frac{m^{2}}{n^{2}}, \quad 2 \mathrm{n}^{2}=\mathrm{m}^{2}$.
[The contradiction that we will establish is that $2 \mid \mathrm{m}$ and $2 \mid \mathrm{n}$,
which contradicts the fact that m and n have no common prime factor.]
Since $\mathrm{m}^{2}=2 \mathrm{n}^{2}$ and n^{2} is an integer, $2 \mid \mathrm{m}^{2}$, by definition of "divides".
\therefore Since $2 \mid \mathrm{m}^{2}$ and 2 is prime, $2 \mid \mathrm{m}$, by Theorem (NIB) 3 .
\therefore There exists an integer k such that $\mathrm{m}=2 \mathrm{k}$, by definition of "divides". Recall that $2 \mathrm{n}^{2}=\mathrm{m}^{2}$.
$\therefore 2 \mathrm{n}^{2}=(2 \mathrm{k})^{2}=2\left(2 \mathrm{k}^{2}\right)$, by substitution and the rules of algebra.
Dividing by 2 , we conclude that $\mathrm{n}^{2}=2 \mathrm{k}^{2}$, and k^{2} is an integer .
$\therefore 2 \mid \mathrm{n}^{2}$, by definition of "divides".
\therefore Since $2 \mid \mathrm{n}^{2}$ and 2 is prime, $2 \mid \mathrm{n}$, by Theorem (NIB) 3.
$\therefore 2 \mid \mathrm{m}$ and $2 \mid \mathrm{n}$, which contradicts the fact that m and n have no common prime factors.
Therefore, $\sqrt{2}$ is irrational , by proof-by-contradiction
QED
[You might consider how this proof can be adapted to prove that $\sqrt{5}$ and $\sqrt{7}$ are irrational.]

To Prove: For all positive integers n , if n is not a perfect square, then \sqrt{n} is irrational.
[This is the statement to be proved in Problem \#22 of Section 4.6,]

Proof: [by Contraposition]

Let n be any positive integer.
Suppose that \sqrt{n} is rational. [We need to show that n is a perfect square.]

Since \sqrt{n} is rational and positive, there exist positive integers a and b with $\mathrm{b} \neq 0$ such that $\sqrt{n}=\frac{a}{b}$, and we can assume that $\frac{a}{b}$ is written in lowest terms, so that a and b have no common prime factor.

Since $\sqrt{n}=\frac{a}{b}, \quad \mathrm{n}=(\sqrt{n})^{2}=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}} . \quad$ Since $\quad n=\frac{a^{2}}{b^{2}}, \quad b^{2} \mathrm{n}=\mathrm{a}^{2}$.
[We next prove that $\mathrm{b}=1$ using a proof-by-contradiction .]
Suppose, by way of contradiction, that $\mathrm{b} \neq 1 . \quad\left({ }^{* * *)}\right.$
\therefore Since $\mathrm{b}>0$ and $\mathrm{b} \neq 1, \mathrm{~b}>1$.
\therefore by Theorem 4.3.4, there exists some prime number p such that $\mathrm{p} \mid \mathrm{b}$.
Since $b^{2} n=b(b n), \quad b \mid b^{2} n$ by definition of "divides".
$\therefore \mathrm{p} \mid \mathrm{b}^{2} \mathrm{n}$, by transitivity of divisibility. Recall that $\mathrm{b}^{2} \mathrm{n}=\mathrm{a}^{2}$.
$\therefore \mathrm{p} \mid \mathrm{a}^{2}$, by substitution.
\therefore Since p is prime and $\mathrm{p}\left|\mathrm{a}^{2}, \mathrm{p}\right| \mathrm{a}$, by Theorem (NIB) 3.
$\therefore \mathrm{p} \mid \mathrm{a}$ and $\mathrm{p} \mid \mathrm{b}$, which contradicts the fact that a and b have no common prime factor.
$\therefore \mathrm{b}=1$ by proof-by-contradiction. [Considering the initial supposition $\left({ }^{* * *}\right)$ above]
$\therefore n=\frac{a^{2}}{b^{2}}=\frac{a^{2}}{1}=a^{2}$, and, therefore, n is a perfect square.
\therefore If n is not a perfect square, then \sqrt{n} is irrational, by contraposition.
\therefore For all positive integers n , if n is not a perfect square, then \sqrt{n} is irrational, by Direct Proof . QED

