Irrational Square Roots:

$\sqrt{2}$ and \sqrt{n} when n is a Positive Integer and Not a Perfect Square

[It is recommended that you review Theorem (NIB) 3 in the handout "Theorems (NIB) 1,2, and 3."] Theorem 4.6.1: $\sqrt{2}$ is irrational.

Proof: [Proof by Contradiction]

Suppose, by way of contradiction, that $\sqrt{2}$ is rational.

Since $\sqrt{2}$ is rational and positive, there exist positive integers m and n, with $n \neq 0$, such that $\sqrt{2} = \frac{m}{n}$, and we can assume that $\frac{m}{n}$ is written in lowest terms, so that m and n have no common prime factor.

[The author mistakenly says that m and n "have no common factor", but 1 is always a common factor.]

Since
$$\sqrt{2} = \frac{m}{n}$$
, $2 = (\sqrt{2})^2 = (\frac{m}{n})^2 = \frac{m^2}{n^2}$ by substitution.
Since $2 = \frac{m^2}{n^2}$, $2n^2 = m^2$.

[The contradiction that we will establish is that $2 \mid m$ and $2 \mid n$,

which contradicts the fact that m and n have no common prime factor.]

Since $m^2 = 2n^2$ and n^2 is an integer, $2 \mid m^2$, by definition of "divides".

 \therefore Since $2 \mid m^2$ and 2 is prime, $2 \mid m$, by Theorem (NIB) 3.

:. There exists an integer k such that m = 2 k, by definition of "divides". Recall that $2 n^2 = m^2$. :. $2 n^2 = (2 k)^2 = 2(2 k^2)$, by substitution and the rules of algebra.

Dividing by 2, we conclude that $n^2 = 2k^2$, and k^2 is an integer.

- \therefore 2 | n², by definition of "divides".
- \therefore Since $2 \mid n^2$ and 2 is prime, $2 \mid n$, by Theorem (NIB) 3.
- \therefore 2 | m and 2 | n, which contradicts the fact that m and n have no common prime factors.

Therefore, $\sqrt{2}$ is irrational, by proof-by-contradiction

QED

[You might consider how this proof can be adapted to prove that $\sqrt{5}$ and $\sqrt{7}$ are irrational.]

To Prove: For all positive integers n, if n is not a perfect square, then \sqrt{n} is irrational.

[This is the statement to be proved in Problem #22 of Section 4.6,]

Proof: [by Contraposition]

Let n be any positive integer.

Suppose that \sqrt{n} is rational. [We need to show that n is a perfect square.]

Since \sqrt{n} is rational and positive, there exist positive integers a and b with $b \neq 0$ such that $\sqrt{n} = \frac{a}{b}$, and we can assume that $\frac{a}{b}$ is written in lowest terms, so that a and b have no common prime factor.

Since
$$\sqrt{n} = \frac{a}{b}$$
, $n = (\sqrt{n})^2 = (\frac{a}{b})^2 = \frac{a^2}{b^2}$. Since $n = \frac{a^2}{b^2}$, $b^2 n = a^2$.

[We next prove that b = 1 using a proof-by-contradiction.]

Suppose, by way of contradiction, that $b \neq 1$. (***)

 $\therefore \text{ Since } b > 0 \quad \text{and} \quad b \neq 1 \,, \quad b > 1 \,.$

: by Theorem 4.3.4, there exists some prime number p such that $p \mid b$.

Since $b^2 n = b(bn)$, $b \mid b^2 n$ by definition of "divides".

 \therefore p | b² n, by transitivity of divisibility. Recall that b² n = a².

 \therefore p | a², by substitution.

 \therefore Since p is prime and p | a^2 , p | a, by Theorem (NIB) 3.

 \therefore p | a and p | b, which contradicts the fact that a and b have no common prime factor.

 \therefore b = 1 by proof-by-contradiction. [Considering the initial supposition (***) above]

$$\therefore$$
 $n = \frac{a^2}{b^2} = \frac{a^2}{1} = a^2$, and, therefore, n is a perfect square.

 \therefore If n is not a perfect square, then \sqrt{n} is irrational, by contraposition.

 \therefore For all positive integers n, if n is not a perfect square, then \sqrt{n} is irrational, by Direct Proof.

[When applying this result, use the justification, "by Problem #22 of Section 4.6."]